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I INTRODUCTION

Currently there are no well functioning reserve markets in use in the US. There is some
evidence that a well functioning reserve market can help mitigate price spikes and solve
the capacity problem. Currently reserves are thought of as having time dependent
properties, that is, they must be spinning or able to synchronize in ten minutes or able to
synchronize in thirty minutes. However, it is well known that given a network that can
become constrained on voltage or real power flows, reserves must also be spatially
located in order to handle all the contingencies that could occur. To date, there is no
credible science-based method for assigning reserves in this way. Virtually all methods
are ad-hoc and are based on engineering judgment and experience. The purpose of this
work is to develop a sound basis and a methodology for assigning both real energy as
well as reactive reserves.

In the arena of deregulated electric power markets, the concept of location-based
marginal pricing (LBMP) is well-established and is commonly used to set electricity
prices at a nodal level, making it possible to assign the cost of congestion to the locations
that create it in the first place. However, in the reserve power markets, no standard
methods for location-based pricing of reserves exist. Part of the problem lies in the fact
that reserves must be sized and located to help the system survive major changes in the
configuration of nodes with injections and changes in network topology due to line
outages. Traditionally, within each control area a certain amount of operating reserve is
required, the assumption being that all generators in a given area cooperate to configure
the flows to maintain the system in operation. In a deregulated market, however, no
cooperation exists and it may be possible that redispatching becomes extremely
expensive. Thus, it is hard to identify predefined areas, each with its own reserve
requirements.

This project is exploring several options for the solution of the reserve scheduling
problem that are also compatible with the idea of a deregulated reserve market structure.
One of the major questions is whether it is possible to devise a cost-minimizing
scheduling algorithm for the spatially distributed reserve problem that reveals the
location-based shadow prices for the reserve requirements. The constraints imposed by



grid security considerations should be taken into account in the procedure. If this major
question is answered in the affirmative, a framework for a reserve power market based on
the computed shadow prices should be derived automatically from it.

II PROBLEM FORMULATION

Reserves are necessary to provide for contingencies and changes in load over future time
intervals. Contingencies involving both lines and generators must be provided for. In
terms of the optimization problem we consider a base case plus a list of other cases
including contingencies and different loads. It is common to formulate the unit
commitment problem with an index i for generating units and t for time slice. Here we
substitute the index k for contingencies (possibly including the time slice).

Rather than the unit commitment formulation

ng N .
Min {K(U) + 3 Y uf(Gy, )}
U,G t=1i=1
we suppress the unit commitment portion of the problem and concerns with ramp rates
until section III and focus on the concept of reserves by attempting to minimize the
expected cost

N
hé[in 2k Pk {_Zlf(Gik ) + L (R (G))}

where py is the probability of the k™ contingency, G is a matrix of generator powers and
Rix is the reserves needed from generator i for contingency k. The dependence of the
reserve matrix R on the generation matrix G is important in constructing a suitable
algorithm. Consider a simple example with three generators, a base case and three
contingencies as shown in Table 1.

Generation Reserves

Genl Gen2 Gen3 Genl Gen2 Gen3
Base 50 250 100 100 0 50
Contingencyl 50 200 150 100 50 0
Contingency?2 100 150 150 50 100 0
Contingency3 150 150 100 0 100 50

Table 1 A Simple Example

The generation for the base and for each contingency is found from an Optimal Power
Flow (OPF). This isn’t a requirement but does provide a good initial guess for the
optimization. The three generators represent different situations in terms of reserves. G3
produces 100 MW of energy in the base case and is required to increase its output to 150
MW for two of the contingencies. If one of those contingencies should occur G3 will be
paid for generating 150 MW. In the other two cases, the base and contingency 3, G3 is



paid (presumably at some other rate) for 100 MW of energy and 50 MW of reserve. The
case for G1 has the minimum output from G1 as the base case with maximum reserves of
100 MW. Contingencies 2 and 3 result in more output from G1, more energy payments
and less reserve payment. G2 has maximum output in the base case with decreased output
for all three contingencies. Note that if contingency 2, for example, happens G2 is
required to limit its output to 200 MW. Since we might return to the base case after a
contingency, we regard the 50 MW required to return G2 to 250 MW as a reserve. Thus
there is a reserve pattern for each contingency. It is assumed that given a generation
pattern G that the reserve matrix R, is computed from G. For the example,

(50 250 100]  [100 0 50

50 200 150 100 50 0
G= , R=

100 150 150 50 100 0

150 150 100 0 100 50

In general R can be computed from G as follows: Let R1=max(G) be a row vector
containing the maximum of each column of G,

For the example.
RI1=[150 250 150]

Then, R=ones(K,1)*R1-G, i.e.,

150 250 150] [ 50 250 100]
150 250 150| | 50 200 150
150 250 150| [100 150 150
(150 250 150] |150 150 100

Given any G a matrix R can then be computed. The OPF minimizes energy costs but does
not consider the reserve cost. In the lossless transmission example note that the reserve
definition produces 150 MW of reserve for the base case and each contingency. If the
cost of reserves were the same for all generators then there would be a constant cost for
reserves and the generation pattern would not affect the reserve cost. The new
optimization is necessary, and there are locational reserve prices if there are losses and
line constraints.



The optimization problem is to minimize the expected cost
N
Min 2k Pk _Zlf(Gik) + 1y (R (G))
1=

subject to line constraints and energy balance constraints. As an example consider the
system in Figure 1 with the two tie lines (4-12 and 23-24) constrained to flows of 10
MVA and with offers from the six generators in the form of Figure 2. (note that f.(.) and r
(.) are then piecewise linear) The optimization is performed with the additional
constraint that for each generating unit the sum of generation and reserve is less than or
equal to the unit’s capacity. If DC load flow assumptions are used for the line constraints
then the piecewise linear cost function can be manipulated so that a linear programming
problem is produced. The alternative is to use AC power flows for the line constraints in
order to incorporate reactive power and voltage issues into the reserve environment. The
modified work statement (section IV) involves the development of software modeling the
system in Figure 1 with offers as shown in Figure 2. At this size it seems reasonable that
the AC power flows can be used even if this turns out not to be the case for very large
systems

A numerical simulation was run to test the linear program version using the system
shown in Figure 3 . The simulation involves a base-case and 30 line-out contingencies
The contingencies were chosen such that if they occurred they would not cause the
system to island. Figure 3 shows the optimal dispatch for each generator as a function of
the contingencies. The “biggest” contingency is contingency #21, in which line No.28
(the line connecting bus 15 and bus 23) is out. In that case, Generator #6 must supply
most of the demand in area 2 because of the tie-line limit. So the answer to the locational
reserves problem for this case is that generator #6 must supply all the reserves. Clearly
then, generator #6 has reserve market power and could offer any price (presumably a
high one) into the reserve market and get it This is consistent with the situation observed
in New York last year.
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III. A Security-Constrained Unit Commitment Treatment

1 Introduction

As the computational power available to industry operators increases, it becomes possible to solve
ever more complex problems at the production planning (or market clearing) stage. The basic
economic dispatch problem has been refined through the decades to include loss approximations,
hydrothermal coordination considerations, commitment decision integer variables, linear network
flow models, nonlinear AC network flow models and so on, all the way up to integrated unit
commitment-nonlinear optimal power flows as in [50]. This work is an attempt to incorporate
security considerations in the form of post-contingency redispatch feasibility to the production
planning problem. In doing so, it addresses the problem of finding the optimal geographic dis-
tribution of reserve, because a flawed choice of reserve distribution would result in an infeasible
post-contingency redispatch.

Security-abiding dispatch has been an important topic in the industry, and even early papers
such as [13] are still continuously referred to. Security considerations are now an integral part
of commercial software, and continues to be an active are of research. Both probabilistic and
deterministic methods abound. Deterministic methods usually consider specific contingencies
and provide a test by running power flows. If the resulting power flow solution is inadequate the
nominal dispatch is modified. In the planning stage, it is possible to include some restrictions so
that the resulting dispatch is more secure [10, 13, 19]. Some rules of thumb have been adopted
in the operational procedures advocated by several technical bodies, such as having a certain
percentage of available reserve. In solving the planning problem, sometimes it is forgotten that
these rules of thumb are there to ensure safe operation and they are just included in the model
without taking a look at actual security of the system [38, 39, 43], or, if security is inspected it
is usually in a diagnostic mode [44, 44, 46]. In this sense, there hasn’t been a lot of improvement
since the early works [10, 13, 19]. Now, the need arises to dispatch reserve in a secure manner in
a market environment, which implies a price-clearing procedure as well. This work tries to solve
the security problem first and then prices can be determined using extra procedures.



2 The Base Problem

Consider a network description given by

I=BO+1, (1)

where I € R™ is the vector of bus power injections, § € R"™ are the bus voltage angles, B describes
the “nominal” network topology and I, is a “quiescent” power injection due to non-zero branch
flows when any phase shifter angles are different from zero. Consider

where G, D € R™ are net generation and demand at each bus, P, € R™ are the generators’ power
outputs, Pp is the vector of bus loads, and Mg € R™*™ is a “placement” matrix that assigns
a given generator’s output to the bus where the generator is placed. Also, u is a vector of 0-1
variables representing each generator’s commitment status and * is the element-wise multiplication
of two vectors. We consider n; time periods and when appropriate the indexes ¢+ and ¢ are used
to refer to generator number or a particular time period respectively. Then, an unit commitment
plus optimal flow problem (UCOPF) with this network model is stated as

mip () + K () ®
such that
u € U (4)
uPl, < PRSPl i=1.ngt=1...n (5)
Mg(u'* P))— P, = BO'+I,t=1...n (6)
_L< Cot <L t=1...m (7)

where f and K are separable cost functions of the decision variables, U is the set of feasible
commitment schedules that respects individual generators’ minimal up and down times, P,,;, and
P, represent generation operating limits, C' models individual line flows and L are the thermal
limits for all branches. Now consider a “post-contingency” system in which a branch or a generator
has gone offline. We are not going to consider the dynamic behavior of the system immediately
after the contingency and before it settles in a new equilibrium. Rather, we assume that the
system survives the transient and the time period until the (usually automatic) redispatch takes
place, and that the problem to be solved is that a feasible redispatch of the system must exist for
all contingencies being considered.

Let B, fo, M(;, lsm,-n, Pmm, C and L model the new topology and limits, and define the
post-contingency state variables and their increments from the nominal case

P,=P,+AP,, 6=0+A8 (8)
Then, the post-contingency state variables must satisfy, in every time period
MguxP,)—Pp = BO+A0)+1, (9)
u* Prin < ]5_,] < u* Prog (10)
-L< C6 <1 (11)
ux P~ < AP, < ux Pt (12)



with P~ and PT being limits placed on the incremental injections after a contingency. These
limits can be zero if a given generator is not available for redispatch, or can be limited by ramp
rate restrictions or by stability considerations.

If the post-contingency state variables and their constraints are now incorporated into the
original UC problem, yielding a problem described by (3-12), the resulting mathematical program
is a Security Constrained Unit Commitment with Optimal Flow problem (SCUCOPF) which
takes into account a single contingency. More eventualities can be accounted for by including
the post-contingency state variables and constraints to the original formulation. For example,
if a second contingency is being considered, another set of post-contingency variables AP,” and
A@” and another constraint characterization set, similar to (9-12) but written in terms of the
second post-contingency variables will be added to the formulation, which now would include
two post-contingency sets of variables and sets of constraints in addition to the base dispatch
problem. For the time being, we restrict our treatment to the one-contingency case to avoid
the very cumbersome notation that would result, in the understanding that the mechanism for
considering more contingencies is conceptually straightforward, even if it does increase the size of
the problem by adding more variables and constraints.

A note regarding the nature of the post-contingency flow is in order. Following a generator
outage, for example, other generators used for load following will increase their output until
frequency recovers and all zonal transfers achieve their prescribed setpoints. If we want to model
this behavior in the post-contingency flow, we run into a more complex problem. Let us ellaborate:
Within the zone of the failed generator, the subset of units that implement load-following usually
pick up a share of the lost generation according to pre-specified participation factors. If those
units are also being considered for the unit commitment decision, then we have a problem in which
the participation factors depend on the commitment schedule. Participation factors are linear
restrictions on the incremental share assigned to each load-following generator. If they are tied to
the unit commitment schedule, they become in effect different (in cardinality and in coefficients)
linear constraints depending on the choice of u. Let us ellaborate: Suppose that three generators
G1-G3 in a given area are being considered for commitment. If , say, G1 and G2 are chosen,
then the load-pickup participation factors impose the restriction APg1 = APg2 = 50%, which
can be modeled using one linear post-contingency restriction. If all three units are committed,
then the postcontigency restriction is APgl = APg2 = AP;’ = 33%, which can be modeled using
two linear post-contingency restrictions. Thus, the number of post-contingency constraints, their
coefficients and structure are dependent on the commitment decision, which is a difficult situation
to model. If, on the other hand, we knew ahead of time which load-following units are selected
(i.e., prescribed to be turned on as part of the problem data) then the portion of generation that
each would pick up could easily be incorporated into the post-contingency flow by choice of p.
It is only when load-following units are also available for commitment choice that we have a more
complex problem. More on this topic after the formulation for the problem and solution method
are addressed.



3 Lagrangian Relaxation Solution

Lagrangian Relaxation algorithms have been very popular for the solution of the mixed-integer
unit commitment problem since they were introduced in the power production planning literature
in [17]. Before, the dominant technique was dynamic programming [1]; see [14] for a thorough
review of the state of the art prior to the advent of Lagrangian Relaxation, and [4, 7, 9, 10, 16, 22]
to sample the historical progression of the dynamic programming treatment.

The Lagrangian relaxation technique, first used in the operations research community to at-
tack mixed-integer problems [6, 11, 12, 15], yields optimization algorithms that attack the dual
functional derived from the Lagrangian when the non-convex constraints are relaxed with multi-
pliers. Historically, they are derived from earlier works on smooth dual optimization [2, 3]. The
salient features of these algorithms are twofold: (1) the dual maximization is straightforward
because the subgradients with respect to the dual variables are readily obtained, and (2) the
evaluation of the dual functional, itself a minimization problem on the primal variables, has a
separable structure that greatly simplifies its computation and that cuts into the combinatoric
complexity exhibited by other solution techniques such as straight dynamic programming. In the
past 25 years, the technique first been proved to be appropriate (in fact, performing better) for
large-scale problems [23, 24]; it has been improved by inclusion of linear network flow models [27];
refined to include improved convergence properties [28]; augmented with ever more kinds of con-
straints [30, 35, 39], and even used to integrate the thermal unit commitment problem and the
AC, nonlinear optimal power flow problem [47, 50].

To solve the SCUCOPF problem, we can resort to a variable duplication, Augmented La-
grangian Relaxation-like algorithm of the sort first reported in [28]. This kind of algorithm has
been widely used in the literature and it rests on two basic pillars: a formulation using two copies
of the optimization variables—a trick that reduces the number of constraints to be relaxed, while
still permitting the separability of the resulting dual objective, and reformulation of the dual
optimization process using the Auxiliary Problem Principle developed in [18, 20, 25]. The basic
methodology in [28] has been further developed in [29, 31] and in [47] and [50].

Consider two sets of variables both representing the power outputs of the generators, s and
d, together with the original commitment decision variables u. Proceed to rewrite the problem
statement using the two sets of variables

Ln(}lsl u® f(d) + K (u) (13)
such that, for every time period ¢ =1...n; and every generator ¢ = 1.....n,
Mgs—Pp = BO+1, (14)
—L< C§ <L (15)
v € U (16)
Uux Prin < d <ux P (17)
s—uxd = 0 (18)
d d+ Ad (19)
5 = s+As (20)
0 0+ A0 (21)



Mys—Pp = BO+A0)+1 (22)
-L< CH <L (23)

Uk Prin < d <tk Py, (24)
ux P~ < Ad <uxP* (25)
uxAd=As or uxd=35 (26)

Note that (14-18) are the restrictions for the base problem, with (14-15) being the network
restrictions, (16-17) being the generator-wise dynamic restrictions and (18) being the equality of
the d and s sets of variables. Then, (19-21) are definitions for postcontingency quantities, (22-
23) are static (i.e., network) post-contingency restrictions, (24-25) are dynamic post-contingency
restrictions, and (26) is the equality of the two sets of post-contingency variables. We call con-
straints (16,17,19,24) and (25) the D constraints, and constraints (14,15,20,21,22) and (23) the S
constraints. The remaining constraints, (18) and (26) are the coupling constraints. It is rather
important to note that the D constraints are expressed only in terms of (u, d, d) while the S con-
straints are expressed only in terms of (s, 3,0, f). Thus, we use D € D, with D = (u, d, d) to rep-
resent feasible (u, d, d) in light of the D constraints and S € S to represent feasible S = (s, 3,0, )
in light of the S constraints. There is even more structure in D and &: The constraints in D
group several time periods, but only one generator because the only constraints that span more
than one time period are in (16). Similarly, the constraints in S span all generators and angles,
but only one time period. This is important because it will result in problems in the D variables
that are separable by generator and problems in the S variables that are separable by time period.

The next step is to write a Lagrangian for this problem, relaxing only the equalities (18)
and (26) with multipliers A and 3:

L(u,d,s,d, 3\ 0) =

Z Z[ui,tfi(di,t) + Kz’,t(uz’,-)]
t=111=1

+ Z z /\i,t(si,t _ ui,tdi,t)
t=11:=1
ng Mg o

+3°3 B30, t — uitdit) (27)
t=11=1
ZZ {uz tf dzt Kzt(uz) _ byt git _ ﬁi,tui,tCZi,t}
i=1t=1

+ Z Z(/\i,tsi,t + Bi,tgi,t) (28)
t=114=1

= »Cl(Da)‘aﬁ)-'_‘cQ(Sa)‘aﬂ) (29)

A dual objective can now be defined as follows:

a\B) = min [Li(D, A )+ LS, A, B)]
= glelgﬁl(DJ\,ﬁ)+g1€1g52(5,>\,r3) (30)



Thus, this dual objective can be computed by solving two separate minimization problems. Fur-
thermore, the minimization of £; can be further separated by generator, resulting in n, dynamic
programs, one for each generator, and the minimization of £y can be further separated by time
period, resulting in n; security-constrained optimal power flows. Then, this objective can be
maximized by adjusting (A, 8) according to a subgradient method; the subgradient can be readily
computed from (27).

An algorithm could actually be proposed at this point, except for one fault: the Lagrangian
is unstable because the cost reflected in the dynamic program subproblems for the d variables is
linear, not strictly convex. The standard regularization technique involves using strictly convex
penalty functions of the relaxed constraints, resulting in the following Lagrangian:

L(u,d,s,d,3,\0) =
ng Mg ) o ) )
Z Z[uz,tfz(dz,t) + Kz,t(uz,-)]
t=11:=1
ng Ng

+ Z Z /\i,t(si,t _ ui,tdi,t)
t=11=1
nt Ng

+ Z Z ,Bi’t(éi’t _ ui,tCZi,t) (31)
t=11=1
ng Mg

+ Z Z _ ui,tdi,t)Z
t=1 1= 1
ng Ng

+> Z (8i,t — ubtd™) (32)

tlzl

Unfortunately, this augmented Lagrangian is not separable because there are cross products of
variables that need to be separated. Here is where the framework of the Auxiliary Problem
Principle is invoked, which, in the context of an iterative algorithm, allows us to substitute the
augmentation terms by the following at the kth iteration:

ng Ng

ZZ Sk 1 Uk 1d 1)(s ot _“i’tdi’t)
t=11=1
nt Ng b

+ZZ { Sk 1) (Ui’tdit “k 1d2t1) }
t=11i= 1
nt Ng

+ZZ §Zt1 Uk 1d )(A” i’tdi’t)
t=14=1
ng Mg b

£ S )+ i — utd ) (3)

tlzl

where the (k—1) subindexes denote the values obtained in the previous dual iteration. Convergence
in the convex case has been proved for b > 2¢ with a limit on the step size depending on ¢ [18, 25].
The resulting Lagrangian can be rearranged in the following manner:

L(u,d, s,d, 8 N1, Br1) =



S ui’tfi(di’t)-i-Ki’t(ui)

Z Z g( b t) ()‘Z’t—1 + Cé';:c,t—l + b“;:c’t—lcgc’t—1)uzi’tcfzj’t
i=1t=1 (B (ubtdh)? — (B + AR + bupt dit ) uitd
ng Ng g( ) (A + Ai,t _bsit )it
+ 2 k—1 Ak_—l K
2598 (s RN R T
b .
+ 5{(3?&—1)2 (Uk 1d D)7+ (52t1)2 (U'k 1d )? } (34)
with Ai’fl = sfc’fl uk 1d ", and AZ; = §2t1 uk 1d . Then, the Lagrangian becomes

separable with the following components in the resulting dual program:

1. A security-augmented optimal power flow for each time period on the (s, 0, §, Af) variables
with quadratic costs associated to the penalty function terms, the relaxation terms and with
restrictions (14,15,22), and (23).

2. Several dynamic programs, one for each generator, on the variables (u,d, cZ), with costs
factored both from the original cost function and the augmentation and relaxation terms,
together with constraints (16,17,24), and (25).

3. Multipliers that accompany the relaxed constraints (18) and (26), and which can be updated
using a simple subgradient rule in order to maximize the dual, i.e.

A = M1+ oaplApg
Br = Br—1+ arAr_y

At this point, the resulting dual optimization algorithm exhibits the separation properties that
we expect from a Lagrangian relaxation treatment.

3.1 Observations

It is appropriate to make several observations now.

1. The algorithm involves the solutions, at each dual iteration, of potentially very large security-
constrained optimal linear power flows, one for each time-period. These problems are
quadratic programs with linear constraints, which can be solved efficiently by modern inte-
rior point methods such as those implemented in BPMPD [32]. The dynamic programming
subproblems are relatively simple and include the logic to enforce the minimum up and
down-time constraints [23, 47]; no special software is required to solve them. Also note that
in principle, it is possible to include a nonlinear AC network flow model using the same
formulation, as in [47, 50]. However, the very large nonlinear optimal flow problems that
would result when we include several post-contingency sets of variables would be difficult to
solve with current OPF technology for more than just a few contingencies. As large-scale
nonlinear optimization techniques continue to evolve, it may be possible to include the full
AC power flow in the formulation.



2. The B multipliers at the solutions will convey information about the price tag attached to
making the dispatch secure against a given contingency. This is useful information that can
be used to price reserve.

3. At this point, it is appropriate to continue the discussion on the load-following units. The
conclusion so far is that the linear restrictions that are needed to enforce fixed participation
factors in the post-contingency load flow change in coefficients and cardinality when such
units are considered for the commitment decision-a rather difficult problem. However, it
is actually possible to enforce such restrictions on the “dynamic” variables by resorting to
joint dynamic programs involving all such units within a zone. Indeed, when the dynamic
programs are joined, when computing the cost for, say (u; = 1,us = 0,uz = 1) it is easy
to include the restriction that Ad; = Ads. However, since the state space of the resulting
joint dynamic program is the cartesian product of the state spaces for the single-generator
programs, this method can become impractical if there are many load-following generators
being considered for commitment in a given zone. Thus, further consideration of the specific
commitment scenario is needed. Let us examine several possibilities. First consider the case
of a central dispatcher in charge of a large geographic area which is broken in zones for
historical reasons or perhaps because the instrumentation required for the implementation
of load-following is already zonified, so that each zone has at most a few load-following gen-
erators which are also being considered for unit commitment (as opposed to pre-committed).
Then the joint dynamic program approach might be feasible. Consider now a second sce-
nario: If there is no technical reason to discount a system-wide load following mechanism,
perhaps it would be wiser to avoid the fixed participation factor scheme and use instead all
available load-following capacity; this would take the problematic proportional restrictions
out of the picture and make use of individual limits on As;, which are already considered in
the formulation. If, on the other hand, we insist on using any proportional allocation rules
for load following on a large set of units that are also being considered for the UC decision,
we are again facing the large joint dynamic program problem as a fundamental issue.

It is suggested that at this point we assume that the situation is best described by the second
scenario above and that we avoid the joint dynamic programs altogether in the treatment,
unless consultation with industry deems them necessary.

3.2 Progress report

Coding of the algorithm continues and is reaching completion. It is presently in a debugging
stage. The data organization and the engine to build the constraints describing the many possible
contingencies have proved a challenge, but it should soon be possible to make some test runs
using nontrivial systems. There is no reason why the algorithm would not work, being that this
treatment has worked for theoretically more complicated problems such as the nonlinear flow +
unit commitment case. No convergence problems are expected.
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IV WORKPLAN.
The modified workplan is:

Task 1. Develop a combined economic and technical model for New York State Thomas.
Jan 1, 2001 - July 1, 2001

Task 2. Formulate the reserve commitment problem as an optimization problem. Thomas
and Thorp April 1, 2001 - Sept 1, 2001

a) Conceptually as a nonlinear (stochastic) optimization problem

b) Approximate linear problem formulation
The problem is related to the unit commitment problem but must include a set of credible
contingencies. The value of an accurate linearization is that some form of Linear
Programming could be used and the dual variables obtained from the solution could yield
marginal prices.

Task 3. Develop algorithms to solve the reserve commitment problem. Thorp. Sept 1,
2001 - March 31, 2002

Task 4. Experimental testing of multidimensional energy/reserve markets using the
software and human decision makers. Thomas and Thorp. Jan 2002- Dec 2002

Task 5. Develop techniques for reducing the number of contingencies used in the reserve
calculation. Thomas July 2001- Sept 2002

Task 6. Test and modify the algorithms on the New York model. Sept 2002 - Dec 2002

Task 7, Prepare final report Thomas and Thorp Sept 1, 2002 - Dec 31, 2002



	II PROBLEM FORMULATION
	Reserves are necessary to provide for contingencies and changes in load over future time intervals. Contingencies involving both lines and generators must be provided for. In terms of the optimization problem we consider a base case plus a list of other
	Rather than the unit commitment formulation
	we suppress the unit commitment portion of the problem and concerns with ramp rates until section III and focus on the concept of reserves by attempting to minimize the expected cost
	where pk is the probability of the kth contingency, G is a matrix of generator powers and Rik is the reserves needed from generator i for contingency k. The dependence of the reserve matrix R on the generation matrix G is important in constructing a suit
	Generation
	Reserves
	Gen1
	Gen2
	Gen3
	Gen1
	Gen2
	Gen3
	Base
	50
	250
	100
	100
	0
	50
	
	
	Contingency1
	50
	200
	150
	100
	50
	0
	Contingency2
	100
	150
	150
	50
	100
	0



	Given any G a matrix R can then be computed. The OPF minimizes energy costs but does not consider the reserve cost. In the lossless transmission example note that the reserve definition produces 150 MW of reserve for the base case and each contingency. I
	
	
	The optimization problem is to minimize the expected cost




	subject to line constraints and energy balance constraints. As an example consider the system in Figure 1 with the two tie lines (4-12 and 23-24) constrained to flows of 10 MVA and with offers from the six generators in the form of Figure 2. (note tha

